FINITE-DIFFERENCE METHOD FOR THE ARBITRARY CROSS-SECTION WAVEGUIDE
PROBLEM USING THE BEST-FIT BOUNDARY APPROXIMATION

Pawel Rozenfeld, Luiz Alberto Campos Mello, Arry Buss Filho

Instituto de Pesquisas Espaciais ~ INPE
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico — CNPq
12200 - Sao José dos Campos, SP, Brasil

ABSTRACT

The finite-difference method is a numerical technique which accuracy strongly depends on the precision

of

the reconstruction of the boundary of a waveguide. Usually the figure is reconstructed either by an outside or an

inside approximation, or by using a much more complex method of unequal-arm finite-difference operator. This
per describes a computer program which maintains the simplicity of the usual finite-difference method
uses the best-fit approximation to the cross-section of a waveguide. As a result a better precision

pa
and which
is obtained

and smaller computer time is used in the solution of the dominant mode of the hollow homogeneous waveguide problem.
Computed values of the cutoff frequencies for several waveguides are presented.

Introduction

The finite-difference method, when applied to
the waveguide problem, transforms the Helmholtz
equation of a continuous potential into a matrix
equation of a discrete potential. The eigenvalues of
this matrix are related to the cutoff wavelenths (k¢)
of the waveguide. Depending on the boundary conditions
used, we can get the TM or TE modes of the waveguide.
The discretization can be achieved using an equal-arml
or unequal-arm?2 operator. The first one is very
straightforward and easy to be implemented on the
computer, while the second one requires more logic to
accomodate the information about the mesh size of the
operator near the curved boundaries and more computer
storage area as a consequence. However the last one gives
more accurate results because it reproduces better the
boundary of the cross—section of a given waveguide. In
this work an imporved equal—arm operator method is
used and the accuracy of the obtained results is
comparable with the ones of the unequal-arm operator
method.

Description of the Method

At the interior points or when the boundaries
are rectangular, both methods utilize the same mesh
size (h). The difference appears near the curved
boundaries. In the equal-arm operator method,
described inl, these boundaries are approximated from
inside or from out-side. The unequal-arm operator
method, described inz, changes the size of the mesh so
that it fits perfectly the boundary from inside.
Because the aim of this work is to compute the
fundamental mode only, it was judged that the equal-
—arm method could be improved without going to the
complexities of the unequal-arm method.

The program accepts the analytical equation of
the boundary of the waveguide. Using a given mesh size
the program covers the cross-section of the waveguide
with a square mesh. The problem of the boundary points
is solved by the following logic.

The program detects the transition from the
interior to the exterior points, Starting from an
interior point on the transition, it computes two
distances along the mesh line. The first omne (dj) is
the distante from the interior point to the real
boundarv given by its analytical expression. The
second one (dz) is the distance from its exterior
neighbor point to the real boundary. If dy is less
than dq, the corresponding exterior point becomes a
part of the boundary. If not, it remains as an
exterior point. In this way, even though the
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reconstruction of the boundary is not perfect, it can
be considered as the best-fit attained using an
equal-arm operator.

The solution of the matrix generated by the
finite-difference scheme is iterative one and it starts
with some assumed value for the discrete potentials
and the eigenvalue. Usually' the program starts with
the values of potentials equal to 1 and using an
estimated eigenvalue computed by applying a matrix
inversion method to a matrix generated by a rougher
mesh size. This program starts with the eigenvalue
equal to 1 for desired mesh size needing none of the
matrix inversion methods.

In order to speed up the process, an optimal
acceleration factor (wopt) is computed by the program.
-2
1+v/1-n'"
where n is an estimate of the spectral radius of the

matrix. It is the quotient of the norms of the two
consecutive interactions.

Wopt 7

Using this optimal acceleration factor, several
iteractions are performed and the potentials are
computed. The Rayleigh quotient give us an estimate of
the eigenvalue. If two successive estimates of the
eigenvalue differ by less than a pre-fixed precision
the process is stopped. If not, it proceeds in order to
satisfy this requirement.

Numerical Results

The program was run for several figures and the
results were compared withl. The comparison for acircle
appears in Table I.
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It can be seen that the results of this work
are better than that ofl even for larger mesh sizes.
This is due to better reconstruction of the boundary
in our program. The same kind of behavior was observed
for an ellipse. As far as a rectangle or a square is
concerned, our results and theirs are very much similar
for the TM-mode. This is explained by very good
reconstruction of the boundary of these waveguides in
both approaches, ours and theirs.

The comparison with? for the TEj; and TMgy
modes of a circular waveguide appears in Table II. The
normalized characteristic impedance of waveguide is
defined on the power-voltage basis for the TM modes,
and on the power—current basis for the TE modes.

TABLE II
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Our results are somewhat worse than than theirs
for larger mesh sizes, becoming equivalent to theirs
when the mesh sizes decrease.

Even though it was not our goal to study the
higher order modes, this was done for the third TE
(TEg1) and TM (TMpq) modes of a circle imposing TE and
TM boundary conditions over a quarter of a circle, The
results are shown in Table II. The general behavior is
similar to that of the fundamental modes.

TABLE III

3rd TE AND TM MODES IN A CIRCULAR WAVEGUIDE

TE ™
h/d k.d IMPEDANCE (Z ) k d ERROR (%) | IMPEDANCE (Z)
1/20 3 9622 1.1964 5.4037 0.98 0.1896
1740 3.8978 1.0847 5.3552 0.08 0.2002
1/80 3.9011 1.0008 5.3451 -0.11 0.2031
THEORETICAL 5.35088
d -~ Diameter of the circunscript circle.
It was also examined a ridge waveguide shown on
Figure 1.
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FIGURE 1 - RIDGE WAVEGUIDE

Its (k.d) is find to be 1.9378 while its impedance is
0.5932,

Conclusion

The computer program presented in this paper
showed very good performance as far as the cutoff wave
length and the impedance are concerned. It required
less than 8 min of computer time to evaluate about
3000 points for getting (k.d) with 1074 precision. If
this requirement is relaxed the computing time
decreases rapidly.

The program was run on the Burroughs B-6800
machine and it required up to 10K of storage for most
of the figures described in this work and up to 290K
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One figure which represents certain difficulty
in its computation by the finite-difference method is
an hexagon. The difficulty arises from the fact that

slope of

its sides, making more difficult a precise reconstruc
tion of the boundaries of the figure. The results for
the TE and TM fundamental modes appear in the Table IV.

76

References

1 - DAVIES, J.B. and C.A, MUILWYK '"Numerical Solution
of Uniform Hollow Waveguides with Boundaries of
Arbitrary Shapes'", Proc. IEE, vol. 113, no. 2,
Feb. 1966, pp. 277-284,

BEAUBIEN, M.J. and A. WEXLER "Unequal-Arm Finite-
Difference Operators in the Positive-Definite
Successive Overrelation (PDSOR) Algorithm", IEE
Transactions Microwave Theory and Technique, vol.
MTT-11, no. 12, Dec. 1970, pp. 1132-1149.

LAURA, P.A. "Review of Methods for Numerical
Solution of the Hollow-Waveguide Problem",
(Correspondance), Proc. IEE, vol. 120, no. 4,
Apr. 1973, pp. 431-432.



