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ABSTRACT

The finite-difference method is a numerical technique which accuracy strongly depends on the precision of

the reconstruction of the boundary of a waveguide. Usually the figure is reconstructed either hy an outside or an
inside approximation, or by using a much more complex method of unequal-arm finite-difference operator. This pa

per describes a computer program which maintains the simplicity of the usual finite-difference method and whic~

uses the best-fit approximation to the cross-section of a waveguide. As a result a better precision is obtained

and smaller computer time is used in the solution of the dominant mode of the hollow homogeneous waveguide problem.

Computed values of the cutoff frequencies for several waveguides are presented.

Introduction

The finite-difference method, when applied to
the waveguide problem, transforms the Helmholtz
equation of a continuous potential into a matrix
equation of a discrete potential. The eigenvalues of
this matrix are related to the cutoff wavelengths (kc)

of the waveguide. Depending on the boundary conditions

used, we can get the TM or TE modes of the waveguide.

The discretization can be achieved using an equal-arml

or unequal-armz operator. The first one is very

straightforward and easy to be implemented on the
computer, while the second one requires more logic to

accommodate the information about the mesh size of the

operator near the curved boundaries and more computer
storage areaas a consequence. However the last one gives
more accurate results because it reproduces better the
boundary of the cross-section of a given waveguide. In

this work an imporved equal-arm operator method is
used and the accuracy of the obtained results is

comparable with the ones of the unequal-arm operator
method.

Description of the Method

At the interior points or when the boundaries

are rectangular, both methods utilize the same mesh

size (h). The difference appears near the curved
boundaries. In the equal–arm operator method,
described inl, these boundaries are approximated from
inside or from out–side. The unequal–arm operator
method, described in2, changes the size of the mesh so
that it fits perfectly the boundary from inside.

Because the aim of this work is to compute the

fundamental mode only, it was judged that the equal-

-arm method could be improved without going to the

complexities of the unequal-arm method.

The program accepts the analytical equation of

the boundary of the waveguide. Using a given mesh size
the program covers the cross-section of the waveguide

with a square mesh. The problem of the boundary points
is solved by the following logic.

The program detects the transition from the

interior to the exterior points. Starting from an
interior point on the transition, it computes two
distances along the mesh line. The first one (all) is

the distante from the interior point to the real
boundary given by its analytical expression. The
second one (dz) is the distance from its exterior
neighbor point to the real boundary. If d2 is less

than dl, the corresponding exterior point becomes a
part of the boundary. If not, it remains as an
exterior point. In this way, even though the
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reconstruction of the boundary is not perfect, it can
be considered as the best-fit attained using an
equal-arm operator.

The solution of the matrix generated by the
finite-difference scheme is iterative one andit starts
with some assumed value for the discrete potentials

and the eigenvalue. Usuallyl the program starts with
the values of potentials equal to 1 and using an
estimated eigenvalue computed by applying a matrix

inversion method to a matrix generated by a rougher

mesh size. This program starts with the eigenvalue

equal to 1 for desired mesh size needing none of the
matrix inversion methods.

In order to speed up the process, an optimal
acceleration factor (wOpt) is computed by the program.

2
~opt =

1+ J l-n’

where rl is an estimate of the spectral radius of the

matrix. It is the quotient of the norms of the two

consecutive interactions.

Using this optimal acceleration factor, several
interactions are performed and the potentials are
computed. The Rayleigh quotient give us an estimate c)f

the eigenvalue. If two successive estimates of the
eigenvalue differ by less than a pre-fixed precision
the process is stopped. If not, it proceeds in order to
satisfy this requirement.

Numerical Results

The program was run for several figures and the
results were compared withl. The comparison foracirc.le

appears in Table I.

TABLE I

kcd FOR TE1l AND ~0~ MODES IN A CIRCULAR WAVEGUIDE

d - Diameter of the circle.
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It can be seen that the results of this work
are better than that of 1 even for larger mesh sizes.
This is due to better reconstruction of the boundary
in our program. The same kind of behavior was observed
for an ellipse. As far as a rectangle or a square is

concerned, our results and theirs are very much similar
for the TM-mode. This is explained by very good

reconstruction of the boundary of these waveguides in

both approaches, ours and theirs.

The comparison with2 for the TE1l and TMOl
modes of a circular waveguide appears in Table II. The

normalized characteristic impedance of waveguide is
defined on the power-voltage basis for the TM modes,
and on the power-current basis for the TE modes.

TABLE II

kcd FOR TE 11 AND TMO1 MODES IN A CIRCULAR WAVEGUIDE

‘$1 WI

FRO, [2] COMPUTED FROM[2] COMPUTED

I k<d I MPWMCE 7- kc< IUPEMNCE Zm ked IMPEL4NC5Zm “Cd IMPEDANCEZm
“M

mm,(x) ERROR(X) mm(z) mm,(%) mm(:) ERROR(Z) ERRoR(:) mm(,)

1,10 1 8497.,,6 - 1,8205 1.1144 2,4040 - 23896 0,1939

-1 1? 18,74 -003 - -063 -5.04

1/20 1 ~44 - I 8,08 1 00,5 z ,035 - 2<127 0 ?015

o ,7, - .0 0, 7.0, -0 0, - ,,3, .! 3, !

,,4, 1 a~?xo ,$, - 1 8396 0.9,98 24040 - 24091 02035

-0,09 1,21 -003 - 0,18 -0.34

,,92,0 020$6

-1.8 0,19

r“murlc.i 1 8412 0 938s 24048 0.2042

d - Radius of the circle,

Our results are somewhat worse than than theirs
for larger mesh sizes, becoming equivalent to theirs

when the mesh sizes decrease.

Even though it was not our goal to study the
higher order modes, this was done for the third TE

(TEO1) and TM (TM21) modes of a circle imposing TE and
TM boundary conditions over a quarter of a circle. The
results are shown in Table II. The general behavior is
similar to that of the fundamental modes.

TABLE 111

3rd TE AND TM MODES IN A CIRCULAR WAVEGUIDE

‘~ol I ~zl

m“ [2] Cmw,m ,,0!$ [2] Cmwnm

W v jHp~Q~Nc~ b v 2M,W.”CE ~ kcd ,Ws,uu Z- k<d I “Pm.wcc &

ERROR(Z) ERRO*(XI ERROR(%) ERROR(11 mm [%] ERROR(X] ERROR(:) CRRO,(:]

3 ,,91 2 9898 - 5 1025 - s 0,,, .,5,0
Illo ~ 98 “. .2, $7 . .0 ~, . .Q *, .*O ,5

1,20 3 8467 - 3 0783 - 5 1?71 - 5 1557 1845

039 -19,66 - -0 >7 - 039 - 6.87

1,32 3,8339 - 5.1s11 .,92+

, 0,0, - 0 30 -Zsa

1/10 3J3~o,18 - 3,8301 - s 1334 - 5 1663 1950

-0,04 - -004 - Q 17 -156

0 )975

-0.30

r“mm,,cu 3 8,,, ..,,$. 0 !,s!

d - Radius of the circle.

One figure which represents certain difficulty
in its computation by the finite-difference method is
an hexagon. The difficulty arises from the fact that
it contains sharp angles and there is a ~ slope of
its sides, making more difficult a precise reconstruct
tion of the boundaries of the figure. The results fo;
the TE and TM fundamental modes appear in the Table IV.

TABLE IV

Zm AND kcd FOR FUNDAMENTAL TE AND TM MODES

IN AN HEXAGONAL WAVEGUIDE

TE I TM

h/d kcd IMPEDANCE ( Z-) kcd I ERROR (%) IMPEDANCE (Zm)

I I I I I 1

d - Diameter of the circunscript circle.

It was also examined a ridge waveguide shown on
Figure 1.
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All dimensions in mm.

FIGURE 1 - RIDGE WAVEGUIDE

Its (k.d) is find to be 1.9378 while its imuedance is

0.5932~

Conclusion

The computer program presented :

showed very good performance as far as
length and the impedance are concerned

n this paper
the cutoff wave

It required –
les; than 8 min o; computer time to evaluate ;bout
3000 points for getting (kcd) with 10-4 precision. If
this requirement is relaxed the computing time
decreases rapidly.

The program was run on the Burroughs B-6800

machine and it required up to 10K of storage for most

of the figures described in this work and UD to 290K

for

1-

2-

3-

very large figures like the ridge.

References

DAVIES, J.B. and C.A. MUILWYK “Numerical Solution
of Uniform Hollow Waveguides with Boundaries of

Arbitrary Shapes”, Proc. IEE, vol. 113, no. 2,
Feb. 1966, pp. 277-284.

BEAUBIEN, M.J. and A. WEXLER “Unequal-Arm Finite–

Difference Operators in the Positive-Definite
Successive Overrelation (PDSOR) Algorithm”, IEE
Transactions Microwave Theory and Technique, vol.

MTT-11, no. 12, Dec. 1970, pp. 1132-1149.

LAURA, P.A. “Review of Methods for Numerical
Solution of the Hollow-Waveguide Problem”,
(Correspondence), Proc. IEE, vol. 120, no. 4,

Apr. 1973, pp. 431-432.

76


